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Abstract

Numerical computations were carried out for transient natural convection in molten silicon (Pr�0.016) in a relatively shallow crucible

heated on the wetted surface and cooled by a crystal rod and at the free surface. At Ra�105, six separate roll cells appeared with triangular

isotherms. In each cell, a coaxial double spiral streak line was found to exist. At Ra�106, the convection became oscillatory with eight peak

temperatures in a circumferential direction. The oscillation was found to consist of simultaneous movement of the roll cells in both the

vertical and circumferential directions. # 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

Oscillatory convection of the molten ¯uid in a Czo-

chralski crystal-growing system has been asserted to be

responsible for striations in the crystal rod [1]. A number

of numerical simulations have been carried out for natural

and mixed convection in the geometrical and thermal con-

®gurations of such systems [2±4].

The most recently reported papers related to the Czo-

chralski con®guration are as follows. Tanaka et al. [5] using

a CCD camera observed transient patterns on the surface of a

melt without a crystal rod. They classi®ed four patterns

depending on the rate of rotation of the crucible. They found

axisymmetric spoke ¯ow at 0.3 rpm, n-folded or island

patterns at 0.7 rpm and a cellular pattern at 10 rpm. They

then carried out three-dimensional transient numerical com-

putations for the same conditions as in the experiments and

found a change in the strengths of the radial velocity

components along the circumferential direction. However,

the detailed mechanics of the transient characteristics were

not clear. With an increase in the rate of rotation, multiple

vertical Benard-like ¯ows became predominant. Their work

appears to be the most closely related to the present work,

although they did not report the important limiting case of no

rotation, which is more dif®cult to compute since there is no

centrifugal force to order the convection.

Jarvinen et al. [6] reported axially symmetric two-dimen-

sional transient computations with a ®nite-element scheme.

They attempted to simulate a realistically sized crucible with

a height of 27.5 cm but were unable to obtain stable solu-

tions for the melt ¯ow at a realistic rate of rotation.

Assaker et al. [7] carried out time-dependent global

simulations for a crystal-manufacturing furnace using a

®nite-element method and a mixing-length model for tur-

bulent convection in the melt. Their model postulated an

axisymmetric ¯ow. They carried out computations for crys-

tal rods up to 68 cm long.

Zhou and Derby [8] reported three-dimensional transient

numerical calculations for the growth of potassium dihy-

drogen phosphate crystals from a solution using a Galerkin

®nite-element method. Their computations revealed the

importance of the transient characteristics of ¯ow, although

their system differs from a Czochralski system in that it

employs melt-stirring posts and a holder.

Dornberger et al. [9] measured temperature distribution in

the melt and compared it successfully with three different
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models. They stated that the melt convection and mass

transfer rates have not yet been satisfactorily modeled.

The melt is three-dimensional and turbulent and a complete

solution is required for the prediction of oxygen and dopant

transport. The present paper has just that objective.

Lee and Chun [10] measured the oscillatory temperature

in mercury in a rotating crucible in a Czochralski con®g-

uration with a cusp-shaped magnetic ®eld. They reported

ampli®cation of long wave instabilities in the temperature,

depending on the melt aspect ratios and other parameters.

The present work aims to study in more detail the ¯ow

characteristics of Benard-like modes of ¯ow and to clarify

the oscillatory characteristics of Czochralski ¯ow, but this

®rst report does not consider the effects of rotation.

2. The system and model equations

The con®guration of the system is shown in Fig. 1. The

depth and crystal diameter are both equal to h with a

crucible diameter of 4h. This con®guration was chosen

primarily to take into account the effect of radiative cooling

from the melt surface. The equations of conservation for the

system in dimensionless cylindrical coordinates are as

follows:
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The dimensionless variables and parameters are de®ned

as follows:

R � r=r0; Z � z=r0; � � t=t0; U � u=u0;

V � v=u0; W � w=u0

T � �ÿ �0� �= �h ÿ �c� �; P � p=p0; H � h=r0;

�0 � �h � �c� �=2;

Pr � �=�; Ra � g� �h ÿ �c� �h3=����;
r0 � �g� �h ÿ �c� �=�����ÿ1=3 � hRaÿ1=3;

u0 � �=r0 � �Ra1=3=h

p0 � �u2
0 � � �Ra1=3=h

� �2

; t0 � r0=u0 � h2= �Ra2=3
� �

The boundary conditions are:

At the bottom of a crystal rod (Z�0)

U � V � W � 0; T � ÿ0:5

At the crucible surface

U � V � W � 0; T � �0:5

At the melt surface (Z�0)

W � @U=@Z � @V=@Z � 0

Boundary conditions are avoided along the crucible axis

in order to allow for asymmetric flow.

The temperature gradient at the melt surface was assumed

to be constant at

� � �@T=@Z�Z�0 � QlossRaÿ1=3
� �

=fk �h ÿ �c� �=hg;

where,

Qloss � � T4
1 ÿ T4
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The several parameters in the de®nition of � are speci®c

for each actual growing system. The value for � is limited by

the requirement that the surface temperature of the melt be

greater than the melting point.

It may be inferred that � Ra1/3 represents the relative

radiative heat loss compared to the conductive heat

input from the bottom wall of the crucible, namely,

k(�hÿ�c)/h.
Fig. 1. Schematics of the Czochralski crystal growing process for a

shallow layer.
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3. Computational schemes

Symmetry in terms of crucible axis was not forced so that

fully three-dimensional results were possible and indeed to

be expected. Fig. 2 shows the grid con®guration for the

present system. A staggered grid was employed so that the

mass balance could be satis®ed in each cell. The dif®culty in

solving for the velocity components at the center of the

cylinder could also have been circumvented by the techni-

que of Ozoe and Toh [11]. The grid was numbered radially

from a half grid-cell at the other side of the center as

described by the vertical cross-section in Fig. 2(a). The

grid numbers were 30�48�15 for the radial, circumferen-

tial and axial direction, respectively. The inertial terms were

approximated by a ®rst-order upwind scheme but second-

order central differences were used for all other geometrical

derivatives. The pressure and velocity corrections were

obtained by means of the HSMAC (Highly Simpli®ed

Marker And Cell) scheme [12].

4. Computed results

The computations were carried out for natural convec-

tion of a liquid metal (Pr�0.016) for the Czochralski

con®guration. The dimensionless temperature gradient

� at the melt surface was taken to be a series of values

from 0 to 0.06 and the Rayleigh number was taken to

be 105 or 106. The computational time for convergence

of each case was 130 h with an IBM RISC/SYSTEM/

60003 bt.

Fig. 3 shows converged (a) velocity vectors and (b)

isotherms at Z�0.03H near the free surface of the

melt, and those in a vertical cross-section along the A±A0

line. This is a typical axisymmetric two-dimensional solu-

tion.

Fig. 4 shows the transient responses after an imposition

of the radiative cooling from a free surface corresponding to

��0.04. The circumferential velocity component started to

evolve at about ��8000.

Fig. 5 shows converged velocity vectors and isotherms at

��2�104. Fig. 5(a) shows those at Z�0.03H. The isotherms

have a quasi-triangular shape. Velocity vectors approaching

the center tilt toward the triangular corners, which are

slightly cooler than the surroundings. On the other hand,

in Fig. 5(b), the isotherms at Z�0.9H are again triangular

but with the colder corners in the reverse direction from

those in (a). Near the bottom plane, the velocity vectors all

point toward the hot side-wall and again they tilt toward the

triangular corners.

Fig. 5(c) shows vertical cross-sections along the

A±A0 and B±B0 lines indicated in (a) and (b). Both the

isotherms and the velocity vectors are asymmetric with

respect to the center line. The overall characteristics

of the ¯ow are more fully explained in the following

graphs.

Fig. 6 shows long particle paths. Picture (a) is a top view

of six particle paths for ��0.04 and Ra�105. Picture (b) is a

perspective view of two particle paths. The square symbols

indicate the starting locations and the triangular ones show

the ®nal points. These plots apparently show secondary

characteristics of natural convection in a Czochralski con-

®guration with radiative cooling from the free surface. The

particle path of Fig. 6(c) reveals a coaxial double spiral

quite similar to those computed and experimentally

observed in a rectangular [13], cylindrical [14] and spherical

region [15] by Ozoe et al. However, in an annular space [8]

between two vertical cylinders heated from below and

cooled from above, separate roll cells appeared with their

axes in a radial direction. In the present system, the roll cells

have their axes in the circumferential direction instead. This

enables the streak lines to move into the neighboring

convective cell as shown in Fig. 6(d). This is quite different

behavior from that computed previously [13±15], for which

the streak lines never merged or moved into the adjacent roll

cells. In the present con®guration, particles and impurities

are mixed up over the entire melt.

The occurrence of this secondary convection appears to

be induced by the cooling from the surface according to

consecutive observations of the circumferential velocity

component, which is however not shown herein.

Fig. 2. Grid numbering for the cylindrical coordinate system. (a) A

vertical view, (b) A top view.
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Fig. 7 shows effect of the magnitude of the radiative heat

¯ux �. Converged isotherms and velocity vectors for

��0.02, 0.04 and 0.06 are compared at Z�0.03H in (a)

and (b) and at Z�0.9H in (c) and (d). The difference in � is

re¯ected only in the strength of the secondary ¯ow with

triangular isotherms.

The above results are all for Ra�105, while following

ones are for Ra�106. The one-decade larger Rayleigh

number reinforces the strength of the main circulation, since

the Rayleigh number is de®ned in terms of the temperature

difference between the crucible wall and the crystal rod.

Fig. 8(a) shows the transient response of the average velo-

city components and temperature for Ra�106. The velocity

responses are oscillatory. Fig. 8(b) shows enlarged

responses of the circumferential components for the ®rst

two peaks of the oscillation.

Fig. 9 hai±hii shows a series of instantaneous isotherms at

levels (a) Z�0.03H and (b) Z�0.9H. The isotherms repre-

sent the eight peaks over 2� radians. This means there are 16

spiral roll cells just as in Fig. 6. By observing this series of

plots carefully, one can discern that the isothermal peak

under the hatched line at time hai becomes a valley at time

hei and again a peak at time hii. The reverse movement may

be seen at Z�0.9H near the bottom. These may be stated that

oscillation accompanies the angular shifts of the peak at the

corners of the multiple roll cells to the valley at an adjacent

corner.

Fig. 10 shows a corresponding series of instantaneous

velocity vectors in a vertical cross-section along the a±a0

line. The center of the roll cell on the left hand side of the

picture goes up and down once for the two peaks of

Fig. 8(b). Therefore two peaks in the response curve of

Fig. 8(b) constitute one rather than two cycles of oscillation.

This oscillation is also staggered between those of the a±a0

line and the b±b0 line, although the latter are not shown due

to space limitations.

Fig. 3. Steady-state velocity vectors and isotherms at Pr�0.016 and Ra�105 without radiative cooling from the top surface (��0). (a) Velocity vectors (b)

Isotherms.

Fig. 4. Transient responses of the average velocity components and

temperature at Pr�0.016, Ra�105 and ��0.04.
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Following several important characteristics become clear

from these results:

1. When the free surface is thermally insulated, the

resulting natural convection is limited to an axisym-

metric single roll cell as shown in Fig. 3.

2. When the free surface as well as the crystal rod works as

a source of cooling, the circumferential velocity com-

ponents become dominant with descending and ascend-

ing flows at some specific angles (three locations in

Fig. 5 and eight locations in Fig. 9). This motion com-

plements the convection over the whole depth as reported

by Yi et al. [3]. This circumferential velocity induces

double-spiral streak lines.

3. The wave numbers of the above circumferential second-

ary convection are maintained at three for the same

Rayleigh number (i.e. for the same temperature differ-

ence between a crucible wall and a crystal rod) even with

different strengths � of the radiative cooling from the free

surface, as shown in Fig. 7.

4. The wave numbers of the circumferential secondary

convection increase greatly with the increase in the

Rayleigh number (an increase in the temperature

difference between the crucible wall and the crystal

rod) even with the same magnitude of radiative cooling.

Fig. 5. Converged velocity vectors and isotherms at Pr�0.016, Ra�105 and ��0.04. (a) Z�0.03H, (b) Z�0.9H, (c) Vertical cross-section A±A0.

Fig. 6. Six long particle paths at Pr�0.016, Ra�105 and ��0.04. Starting

points are square boxes and ending points are triangular. (a) Top view, (b)

Perspective view with two streak lines, (c) Coaxial double spiral

particle path, (d) Streak line protruding into the neighboring convective

cell.

H. Tomonari et al. / Chemical Engineering Journal 71 (1998) 191±200 195



5. The standing oscillation of the natural convection com-

puted in the present system for Ra�106 corresponds to

circumferential secondary mode of flow itself. This is

different from steady-state convection with a circumfer-

ential velocity component as found by Yi et al. [3]. This

circumferential movement mode of flow combines with

the vertical oscillatory movement of the roll cells to form

transient double-spiral streak lines. The streak lines for

this mode of flow are rather difficult to compute since the

computation for spiral particle paths must be carried out

simultaneously with the main transient computations.

The dimensional equivalence for the above computa-

tional results is as follows for an Si melt with the physical

properties [16], ��2.55�10ÿ5 (m2 sÿ1), ��1.438�10ÿ4

(1/K), ��3.498�10ÿ7 (m2 sÿ1) and k�67 (J/(m s K)). Pre-

suming the height of a melt is 5 cm, the maximum velocity

umax and temperature difference �hÿ�c are as follows at

Ra�105 and 106, respectively.

at Ra�105 at Ra�106

r0�1.077�10ÿ3 r0�0.5�10ÿ3 (m)

t0�0.046 t0�0.010 (s)

u0�0.023 u0�0.051 (m sÿ1)

umax�0.011 umax�0.025 (m sÿ1)

�hÿ�c�5.06 �hÿ�c�50.60 (K)

one cycle time for Ra�106 only�
876�0.010�8.76 (s)

The present analysis is limited for a small crucible, but

better computer facilities may soon allow clari®cation of the

fundamental characteristics in a Czochralski manufacturing

system of realistic size.

5. Conclusions

Transient three-dimensional numerical computations

were carried out for natural convection in molten silicon

in a Czochralski con®guration. Double spiral secondary

convection was found to occur in a shallow layer cooled

from the free surface. At Ra�106, a standing oscillation was

found to accompany the angular shift of the secondary

convection with eight peaks of the isothermal contours,

behavior which appears not to have been reported pre-

viously. The oscillation was found to constitute double

peaks in one cycle of the average azimuthal component

of the velocity.

Fig. 7. The effect of the temperature gradient � at Pr�0.01 and Ra�105. The top pictures are for ��0.02, the middle ��0.04 and the bottom ��0.06. (a)

Isotherms at Z�0.03H. (b) Velocity vectors at Z�0.03H. (c) Isotherms at Z�0.9H. (d) Velocity vectors at Z�0.9H.
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6. Nomenclature

A surface area for radiative heat transfer (m2)

g acceleration due to gravity (m sÿ2)

F12 radiative shape factor

h melt height (m)

H �h/r0 (±)

P �p/p0 (±)

p pressure (Pa)

Pr Prandtl number��/� (±)

R �r/r0(±)

r radial coordinate (m)

Ra Rayleigh number�g�(�hÿ�c)h
3/(��) (±)

T �t/t0 (±)

t time (s)

U �u/u0 (±)

u radial velocity component (m sÿ1)

V �v/v0 (±)

v circumferential velocity component

(m sÿ1)

W �w/u0 (±)

w axial velocity component (m sÿ1)

Fig. 8. (a) Transient responses of the average velocity components and temperature at Pr�0.016, Ra�106 and ��0.04. (b) Enlarged circumferential velocity

component for two peaks.
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Z �z/r0 (±)

z axial coordinate (m)

Greek letters

� thermal diffusivity (m2 sÿ1)

� volumetric coefficient of expansion with tempera-

ture (Kÿ1)

" emissivity (±)

� dimensionless temperature gradient at the surface

of the melt (±)

� temperature (K)

�h temperature of hot crucible wall (K)

�c temperature of cold crystal rod (K)

�0 �(�h��c)/2 (K)

� kinematic viscosity (m2 sÿ1)

Fig. 9. A series of instantaneous isotherms from time hai ��16010 to hii ��16886 for Pr�0.016, Ra�106, ��0.04. (a) at Z�0.03H (b) at Z�0.90H.
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� density (kg mÿ3)

� Stefan-Boltzmann constant for radiative transfer

(W (m2K4)ÿ1)

� �t/t0 (±)

� circumferential coordinate (±)

Subscripts

1 melt surface

2 cooling chamber
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